Orford CEVA Primary School

Calculation Policy

June 2022
Review: June 2025

KEY STAGE 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100 .

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1digit numbers, and to add/subtract a 1-digit number to/from a 2-digit number. Another important conceptual tool is the ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10s and 1s. Children may extend this to adding by partitioning numbers into 10s and 1 s.

Multiplication and Division: Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2$, $\times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions: Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Year 1 - Subtraction

Mental methods	Using number bonds/stories for numbers up to and including 10 Count back in 1 s and 10 s from any given 2 digit number Subtract two 1 digit numbers Use number facts to subtract a 1 digit number to a 2 digit number Use 7-3=4 to calculate 27-3=24
Written methods	Be able to record answers using numbers Begin to copy full calculations (7-5=2) Use images/objects to record and solve a concrete problem (including beads on string) Count back in 1s on a number line
Examplerepresentations	Subtracting 10s Bonds to 10
	32 33 34
	42 43 44
	52 斎 $30<14$ - $593>19318$
	Using a number line Counting back with objects
Default skills	Bonds to 10 Count back in 1s Count back in 10s Count back 1 or 10 from any given 2-digit number Start with the biggest number and count back

Year 1 - Multiplication

Mental methods	Count in 2s, 5s and 10s Begin to say what three 5s are by counting out two 5s or three 4s etc. Double numbers to 10
Written methods	Begin to model and draw arrays Use objects to make "groups of" $2,5,10$
representations	

Year 1 - Division

Mental methods	Count back in 2s, 5s and 10s Find half of numbers to 20 Find half of even numbers by sharing
Written	
methods	Begin to model and draw arrays Group and/or share concrete objects to find how many "sets of" numbers make larger ones.
Example	

Year 2 - Addition

Mental methods	Know 1 or 10 more than any number Add 10 or multiples of 10 to any 1 or 2 digit number ($76+20$ as 76,86 , 96, working up to one hop $76+20=96$) Add 2 digit numbers by: -adding 10 s and 1 s ($55+37$ as $55+30=85+7=92$) -using knowledge of number facts to begin to partition (55+37 as $50+30$ and $5+7$, then combine the totals 80 and 12) Add near multiples of $10(19,21)$ by adding the tens and adding/subtracting the 1 Add 3 one digit numbers by spotting bonds to 10 , or doubles Bridge through 10 when solving a 2 digit add 1 digit problem (57+5 = $57+3=60+2=62$)
Written methods	Record answers using numbers and correctly place + and $=$ symbols Write full calculations Record on a number line or hundred square to add
Example representations	$\begin{aligned} & 50+30=80 \\ & 5+37>5+7=12 \end{aligned}>92$
Default skills	Know pairs of numbers which make each total up to 10 Add two 1-digit numbers Add a 1-digit number to a 2-digit number by counting on in 1s Add 10 and small multiples of 10 to a 2-digit number by counting on in 10s Always start with the biggest number

Year 2 - Subtraction

Mental methods	Know 1 or 10 less than any number Subtract 10 or multiples of 10 to any 2 digit number ($76-20$ as 76,66 , 56 , working up to one hop $76-20=56$) Subtract 2 digit numbers by: -subtracting then 10 s and then the $1 \mathrm{~s}(55-32$ as $55-30=25-2=$ 23) -using knowledge of number facts to begin to partition (55-32 as $50-30$ and $5-2$, then combine the totals 20 and 3) Subtract near multiples of $10(19,21)$ by subtracting the closest number of tens and adding/subtracting the 1 Subtract using known addition facts ($3+7=10$, so $10-3=7$ and $10-7=3$) Bridging through 10 when solving a 2 digit -1 digit problem (52-6 $=52$ -$2=50-4=46$) Count up (with the aid of a number line) to find the difference between two close together 2 digit numbers
Written methods	Know corresponding subtraction facts for bonds to 10 and 20 Subtract two 1-digit numbers Subtract a 1-digit number from a 2-digit number by counting back in 1s Subtract 10 and small multiples of 10 from a 2-digit number by counting in 10s
Example representations	
Default skills	Bonds to 10 Count back in 1s Count back in 10s Count back 1 or 10 from any given 2-digit number

Year 2 - Multiplication

Mental methods	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 with confidence, begin to learn the tables by heart Begin to count in 3 s and 4 s Begin to double 2 digit numbers where the units digit is $1-5$ Know doubles to 20
Understand the commutative rule (5×3 = 3×5 and can be worked out	
either way)	

Year 2 - Division

Mental methods	Count back in $2 s, 5 s$ and 10 with confidence from 10x the number Know division facts for 2 s , 5 s and 10 s Begin to count back in 3 s and 4 s Half 2 digit numbers where the tens and units are even Know corresponding halves of even numbers up to 40 Know halves of multiples of 10 to 100 Begin to understand that halving an odd number gives $1 / 2$ Begin to understand that division is the opposite of subtraction ($3 \times 4=12$, so $12 \div 3=4$ and $12 \div 4=3$)
Written methods	Grouping: Use arrays or towers of cubes to group objects ($20 \div 5$ as How many towers of 5 can I make from 20?) Sharing: Find halves and quarters by sharing into 2 or 4 equal piles Find $1 / 2.1 / 4$ and $3 / 4$ of small quantities using the sharing method
Example representations	Grouping: Sharing:
Default skills	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Say how many rows in a given array e.g. How many rows of 5 are in an array of 3×5 ? Halve numbers to 24 Find $1 / 2$ of amounts

Lower Key Stage 2

In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers.

Addition and subtraction: Children are taught to use place value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in 1s' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

Multiplication and division: This key stage is also the period during which all the multiplication and division facts are memorised, including all facts up to 12×12. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by a 1-digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20.

Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1-place decimals, multiplying and dividing whole numbers by 10 and 100.

Year 3 - Addition

Mental methods	Know pairs of all numbers that have a total up to 20 Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning (including problems where they need to bridge 10 or 100) Add multiples and near multiples of 10 and 100 by adding on in 10 s or 100s and adding/subtracting the near multiple amount Perform place-value additions without a struggle ($300+8+50=358$) Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number Add pairs of 3-digit numbers which do not bridge 10 or 100 Begin to add amounts of money using partitioning ($£ 6.35+£ 5$ as $£ 6+$ £5 + 35p)
Written methods	Use number lines to count on in multiples of 10,100 , then units Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with 3 digits Use images to begin to add fractions with equal denominators ($3 / 8+1 / 8$ $+1 / 8$) Use images to recognise fractions that add to $1(1 / 4+3 / 4,3 / 5+2 / 5)$
Example representations	Counting on in 100s $(457+200=457,557,657)$ Mentally partition numbers
Default skills	Know pairs of numbers which make each total up to 10 , and which total 20 Add two 2-digit numbers by counting on in 10 s and 1 s e.g. $56+35$ is $56+30$ and then add the 5 Understand simple place-value additions $\text { e.g. } 200+40+5=245$ Use place value to add multiples of 10 or 100 with ease

Year 3 - Subtraction

Mental methods	Know complementary pairs of all numbers that have a total up to 20 (19-6=3 14-7=7 etc.) Subtract any two 2-digit numbers by counting up or by subtracting multiples of 10 then units (including bridging through 10 and 100) Perform place-value subtractions without a struggle $(536-30=506)$ Subtract multiples and near multiples of 10 and 100
Written methods	Use a number line to find change from $£ 1, £ 5$ and $£ 10$ Use counting up on a number line as an informal written strategy for subtracting pairs of 3-digit numbers Begin to use expanded column where numbers do not need to be borrowed Use images to begin to subtract like fractions ($7 / 8-3 / 8$)
Example representations	Counting back Counting up
Default skills	Know complementary pairs of numbers which total up to 20 Count up to subtract 2-digit numbers Subtract multiples from 100 by counting up Subtract multiples of 10 and 100 with ease Solve basic place value subtractions

Year 3 - Multiplication

Mental methods	Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Know that multiplication is commutative Use place value and number facts in mental multiplication (30×5 is 15 $\times 10$) Begin to partition teen numbers to multiply by a 1-digit number (3×14 as 3×10 add 3×4) Double numbers up to 50 by partitioning
Written methods	Use a number line to do repeated addition Use expanded column method to multiply 2 and 3 digit numbers by 1 digit numbers
Example representations	1 2 3 4 5 6 7 8 9 10 ${ }^{11}$ 12 43 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 81 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ${ }^{71}$ 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100$21.5 \times 3$ 200105 \qquad $3 x$ $600+30+15=645$
Default skills	Know by heart the $2,3,4,5,6,8$ and $10 x$ tables Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50

Year 3 - Division

Mental methods	Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative Use place value and number facts in mental division ($\div 2$ is the same as halving and $\div 4$ is half of that) Halve even numbers to 100 , halve odd numbers to 20
Written methods	Use informal written methods to group/share Perform divisions just above the 10th multiple using repeated subtraction on a number line Find unit fractions of quantities and begin to find non-unit fractions of quantities Know how to record answers which contain remainders
Example representations	
Default skills	Know by heart the division facts derived from the 2, 3, 4, 5, 6, 8 and 10 x tables Halve even numbers up to 50 and even numbers/those which start with even numbers to 100 . Perform divisions within the tables including those with remainders Begin to perform divisions just above the 10th multiple using repeated subtraction on a number line

Year 4 - Addition

Mental methods	Add any two 2-digit numbers by partitioning or counting on (including where bridging is needed) Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next 100, $£ 1$ and whole number ($234+66=30056 p+44 p$ $=£ 13 \cdot 4+0 \cdot 6=4$) Perform place-value additions without a struggle Add multiples and near multiples of 10,100 and 1000 by compensating Add $£ 1,10$ p, $1 p$ to amounts of money Use place value and number facts to add 1-, 2-, 3- and 4-digit numbers where a mental calculation is appropriate ($4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so the total is 4160)
Written methods	Compact column addition for 3 and 4 digit numbers Be able to add like fractions without images Know fraction complements to $1\left(2 / 3^{+}=1\right)$
Example representations	Adding near multiples of 100 Compact column addition $\begin{array}{r} 5347 \\ 2286 \\ +1495 \\ 121 \\ \hline 9128 \\ \hline \end{array}$
Default skills	Add any 2-digit numbers by partitioning or counting on Number bonds to 100 Add 'friendly' larger numbers using knowledge of place value and number facts Use column addition to add 3-digit numbers

Year 4 - Subtraction

Mental methods	Subtract any two 2-digit numbers by counting up or back in 10s, then 1s Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle Subtract multiples and near multiples of $10,100,1000, £ 1$ and 10 p Subtract multiples of 0.1 Subtract $£ 1,10$ p, 1 p from amounts of money
Written methods	Use a number line to find change from $£ 10, £ 20$ and $£ 50$ Use counting up on a number line as an informal written strategy where the larger number is, or is close to, a multiple of 1000 Use expanded column subtraction for 3 - and 4-digit numbers, including borrowing Begin to use compacted column subtraction for 3 digit numbers where the larger number is not a multiple of 100 Subtract like fractions Use fractions that add to 1 to find fraction complements to 1 (e.g. 1 $2 / 3=1 / 3$)
Example representations	Using a number line Expanded to compact column subtraction $\begin{array}{rrr} 600 & 110 & 16 \\ 200 & 20 & 8 \\ -300 & 50 & 8 \\ \hline 300 & 60 & 8 \\ \hline \end{array} \longrightarrow-\begin{array}{rcc} 6 & 11 & 16 \\ 7 & \not 2 & 8 \\ 3 & 5 & 8 \\ \hline 3 & 6 & 8 \end{array}$
Default skills	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100 (512-287 and $67+_{-}=100$) Begin to confidently use written methods to solve more complicated subtractions

Year 4 - Multiplication

Mental methods	Know by heart all multiplication facts up to 12×12 Recognise factors up to 12 of 2 digit numbers Multiply whole numbers and one place decimals by 10 and 100 Know that multiplication is commutative Multiply 1 digit numbers by multiples of 10,100 and 1000 Use place value to aid mental multiplication (8xsomething is double $4 x$ something is double $2 x$ something; $5 x$ something is half of 10xsomething)
Written methods	Use column multiplication to multiply 3 and 4 digit numbers by a 1 digit number Use an efficient written method to multiply two 2 digit numbers (partitioning is recommended)
Example representations	Th do 24×25. Repeat for $x 20$ and add together $\begin{array}{r} 3743 \\ \times \quad 6 \\ 421 \\ \hline 22458 \end{array}$
Default skills	Know by heart all multiplication facts up to 12×12 Multiply whole numbers by 10 and 100 Use the expanded column method to multiply 3 digit by 1 digit numbers

Year 4 - Division

Mental methods	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10, 100, to give whole number answers or answers with 1 decimal place Divide multiples of 10 and 100 by 1-digit numbers using division facts $(3200 \div 8=400)$ Use place value and number facts in mental division ($245 \div 20$ is half of $245 \div 10$ and $245 \div 5$ is double) Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate ($156 \div 6$ can be calculated as $20 \times 6=120$ and $6 \times 6=36$) Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money
Written methods	Use bus stop to divide a 2-digit or a 3-digit number by a 1-digit number Give remainders as whole numbers Begin to reduce fractions to their simplest forms Find unit and non-unit fractions of larger amounts
Example representations	$£ 9 \div 2=£ 4.50$
Default skills	Know by heart all the division facts up to $12 x$ table Divide whole numbers by 10 and 100 to give whole number answers or answers with 1 decimal place Perform divisions just above the 10th multiple using bus stop Find unit fractions of amounts

Upper KS2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division: Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5 - Addition

Mental methods	Know number bonds to 1 and to the next whole number Add to the next 10 from a 1 place decimal number $(13 \cdot 6+6 \cdot 4=20)$ Add 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 Add near multiples of $10,100,1000,10000$ and 100000 to other numbers mentally ($82472+30004$) Add decimal numbers which are near multiples of 1 or 10 , including money ($£ 6.34+1.99$ and $£ 34.59+£ 19.99$) Use place value and number facts to add two or more 'friendly' numbers, including money, decimals and numbers up to 4 digits ($3+8+$ $6+4+7 ; 0 \cdot 6+0.7+0.4 ; 2056+44)$ Use partitioning to add trickier decimal numbers
Written methods	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money Begin to add related fractions using equivalences ($1 / 2+1 / 6=3 / 6+1 / 6$) Choose the most efficient method in any given situation
Example representations	Countin $0-1 \mathrm{~s}, 0.01 \mathrm{~s}$ e.g. Know what 0.1 more than 0.51 is $\begin{array}{r} 15 \cdot 68 \\ +\quad 27.86 \\ 11 \cdot 1 \\ \hline 43 \cdot 54 \\ \hline \end{array}$ $\begin{array}{r} 5347 \\ 2286 \\ +1495 \\ 121 \\ \hline 9128 \\ \hline \end{array}$
Default skills	Mentally add numbers with only 2 digits which are not zeros Derive swiftly and without any difficulty number bonds to 100 Add 'friendly' large numbers using knowledge of place value and number facts Use column addition to add pairs of 4- and 5-digit numbers

Year 5 - Subtraction

Mental methods	Subtract numbers with 2 significant digits only, using mental strategies (6.5-4.2; 72000-47000) Subtract 1- or 2-digit multiples of $10,100,1000,10000$ and 100000 Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10000 and 100000 from other numbers Subtract decimal numbers which are near multiples of 1 or 10, including money ($£ 6.34-£ 1.99$) Use counting up, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction of more difficult money problems, or calculations with larger numbers($£ 10-£ 3 \cdot 45$; 1000 782) Recognise fraction complements to 1 and to the next whole number $\left(1^{2} / 5+3 / 5=2\right)$
Written methods	Use compact column subtraction to subtract numbers with up to 5 digits Use a number line for subtractions where the larger number is a multiple or near multiple of 1000, money problems or decimals up to 2d.p. Begin to use compact column subtraction to solve the above Begin to subtract related fractions using equivalences $\text { e.g. } 1 / 2-1 / 6=3 / 6-1 / 6=2 / 6$ Choose the most efficient method in any given situation
Example representations	$\text { e.g. } £ 50-£ 28.76$
Default skills	Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most mental subtractions Use a number line with confidence to solve any subtraction Use column subtraction to subtract most numbers with up to 4 digits

Year 5 - Multiplication

Mental methods	Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and 1-and 2-place decimals by 10, 100, 1000, 10000 Use knowledge of factors and multiples in multiplication (43×6 is double 43×3 and 28×50 is $1 / 2$ of $28 \times 100=1400$) Use knowledge of place value and rounding in mental multiplication (67×199 as $67 \times 200-67$) Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally (6×27 as 6×20 (120) plus 6×7 (42)) Double amounts of money by partitioning ($£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus 45 p doubled (90 p) giving a total of $£ 74.90$)
Written methods	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Begin to use long column multiplication to multiply 2 and 3-digit numbers by "friendly" 2 digit numbers (containing 2,3,4 and 5) Find $1 \%, 10 \%, 50 \%, 25 \%$ and 20% of amounts Begin to multiply fractions and mixed numbers by whole numbers ≤ 10 $\left(4 x^{2} / 3=8 / 3=2^{2} / 3\right)$
Example representations	Multiply fractions by 1 -digit numbers e.g. $3 / 4 \times 6=\underline{18} / 4=42 / 4=41 / 2$
Default skills	Know multiplication tables to 12×12 Understand what a square number is and how to calculate Multiply whole numbers and 2-place decimals by 10, 100 and 1000 Use knowledge of factors as aids to mental multiplication Use column method to multiply numbers with up to 4 digits by 1-digit numbers Begin to multiply two "friendly" 2 digit numbers using column methods

Year 5 - Division

Mental methods	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10, 100, 1000, 10000 to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies ($34 \div 5$ is $(34 \div$ 10) $\times 2$) Use knowledge of multiples and factors, as well as tests for divisibility, in mental division ($246 \div 6$ is $123 \div 3$, we know that 525 divides by 25 and by 3) Halve amounts of money by partitioning Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate ($96 \div 6$ is $96-60(10 \times 6)$ to leave $36(6 \times 6)$ so $10 x+6 x=16 x$) Know tests for divisibility by 10, 2, 3, 4, 5 and 25 Know how to calculate square numbers and cube numbers Reduce fractions to their simplest form
Written methods	Use bus stop division to divide a number with up to 4 digits by a number ≤ 12 Give remainders as whole numbers or as fractions Find non-unit fractions of large amounts Turn improper fractions into mixed numbers and vice versa Choose the most efficient method in any given situation Begin to understand chunking and record on a number line and in traditional style
Example representations	
Default skills	Know by heart division facts for all tables to 12×12 Divide whole numbers by 10, 100 or 1000 to give answers with up to 1 decimal place Use doubling and halving as mental division strategies Use an efficient written method to divide numbers ≤ 1000 by 1-digit numbers Find unit fractions of 2-and 3-digit numbers

Year 6 - Addition

Mental methods	Know by heart number bonds to 100 and use these to derive related facts ($3.46+0 \cdot 54,3867+33$) Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally (e.g. multiples of 10,100 and 100; decimals which contain bonds to 1 ; near multiples of 10) Add multiples of powers of 10 and near multiples of the same Add negative numbers in a context such as temperature where the numbers make sense Add positive numbers to negative numbers and vice versa Add two 1-place decimal numbers or two 2-place decimal numbers less than $1(4.5+6.3$ and $0.74+0.33)$
Written methods	Use column addition to add numbers with up to 5 and 6 digits Use column addition to add decimal numbers with up to 3 decimal places Use column addition to add numbers with significantly different sizes (e.g. a 4 digit and a 2 digit, or 3 digit and 2 place decimal) Use column addition to add 'tricky' whole numbers and decimals Add mixed numbers and fractions with different denominators
Example representations	$\begin{array}{r} £ \mid 4.64 \\ +\quad £ 28.78 \\ £ \mid 2.26 \\ \|\|\cdot\| \\ \hline £ 55.68 \end{array}$
Default skills	Derive, swiftly and without difficulty, number bonds to 1000 Use place value and number facts to add 'friendly' large or decimal numbers Use column addition to add numbers with up to 5 -digits Use column addition to add pairs of 2-place decimal numbers

Year 6 - Subtraction

Mental methods	Use number bonds to 10,100 and 1000 to perform mental subtraction of any pair of integers by complementary addition (4000-654 as adding 46 , then 300 , then 3000) Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money ($10-3.65$ as adding 0.35 then 6; $£ 50-$ $£ 34.29$ as adding $71 p$ then $£ 15$) Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places Subtract multiples of powers of 10 and near multiples of the same Subtract a mix of positive and negative numbers in a context such as temperature where the numbers make sense
Written methods	Use compact column subtraction to subtract numbers with up to 6 digits, including those where the largest number is a multiple or near multiple of 100,1000 or 10,000 and for decimals up to 3 places. Use a number line to calculate time intervals, bridging through 60mins/1 hour Subtract mixed numbers and fractions with different denominators
Example representations	$\begin{aligned} & 6000-1 \\ & \quad 5999 \\ & \underline{1784-1}= \\ & =\frac{1.783}{4216} \end{aligned}$ $\begin{array}{r}4.5 \\ 45.810 \\ -01.72 \\ \hline 43.88\end{array}$
Default skills	Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition e.g. $1000-654$ as $46+300$ in our heads Use complementary addition for subtraction of integers up to 10000 $\text { e.g. } 2504-1878$ Use complementary addition for subtractions of 1-place decimal numbers and amounts of money e.g. $£ 7 \cdot 30-£ 3 \cdot 55$

Year 6 - Multiplication

Mental methods	Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and decimals with up to 3 places by 10,100 or 1000 Use place value and number facts in mental multiplication ($4000 \times 6=$ $240000.03 \times 6=0.18$) Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 Use rounding in mental multiplication (34×19 as $(34 \times 20)-34$) Multiply 1- and 2-place decimals by numbers up to and including 10 using place value and partitioning (3.6×4 is $12+2.4$ and 2.53×3 is $6+$ $1.5+0.09$) Double numbers with up to 4 digits and decimal numbers with up to 2 places using partitioning
Written methods	Use column multiplication to multiply up to a 4 digit number by any 1 or 2 digit number Use short column multiplication to multiply a whole number by a number with 1 or 2 decimal places, including amounts of money Multiply fractions and mixed numbers by whole numbers Calculate simple percentages
Example representations	$\begin{array}{lllll} £ & 1 & 3 & 7 & 2 \\ \times & & & 6 \end{array}$ $\frac{2}{5} \quad \frac{1}{2} \times \frac{2}{5} \quad \frac{2}{10} \quad \frac{1}{5}$
Default skills	Know by heart all the multiplication facts up to 12×12 Know by heart all squares up to 144 and understand how to calculate a cube number to $5 \times 5 \times 5$ Multiply whole numbers and 1- and 2-place decimals by 10, 100 and 1000 Use column multiplication to multiply up to a 4 digit number by any 1 digit number

	Use column multiplication to multiply a 2 digit number by any 2 digit number, and begin to use it to multiply larger numbers by 2 digit numbers
	Year 6 - Division
Mental methods	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places Identify common factors, common multiples and primes numbers and use factors in mental division Use tests for divisibility to aid mental calculation Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5,20$ and 25 ($628 \div 8$ is halved three times: $314,157,78 \cdot 5)$ Divide 1- and 2-place decimals by numbers up to and including 10 using place value $(2.4 \div 6=0.4 ; 0.65 \div 5=0.13 ; £ 6.33 \div 3=£ 2.11)$ Halve decimal numbers with up to 2 places using partitioning Know and use equivalence between simple fractions, decimals and percentages, including in different contexts Recognise a given ratio and reduce a given ratio to its lowest terms
Written methods	Use short bus stop division to divide a number with up to 4 digits by a 1-digit number up to 12 Use chunking to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers Give remainders as whole numbers, fractions or decimals Divide a 1-place or a 2-place decimal number by a number ≤ 12 using bus stop Divide proper fractions by whole numbers
Example representations	

Default skills	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10, 100, 1000 to give whole number answers or answers with up to 2 decimal places Use an efficient written method, involving subtracting powers of 10 times the divisor, to divide any number of up to 1000 by a number ≤ 12 Divide a 1-place decimal by a number ≤ 10 using place value and knowledge of division facts Use bus stop division and chunking to solve most division problems

